Attached are results for sample(s):

2104KCA0613.1478 - VSW Tech Inc –
 2207

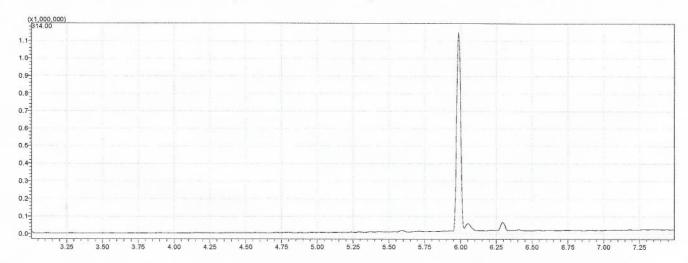
KCA Chemists also saw the following additional cannabinoids:

2104KCA0613.1478

	% Weight
(6AR,9S)-D10-THC	5.52408
(6AR,9R)-D10-THC	90.67492
CBT	0.13247

Thank you for your business!

KCA Laboratories



+1 833-KCA-LABS | trustedresults@kcalabs.com 232 North Plaza Drive | Nicholasville | Kentucky | 40356

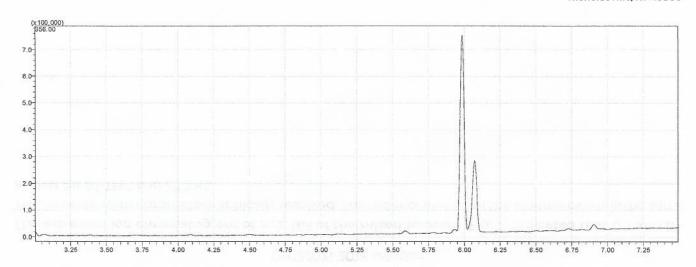
The information contained in this e-mail is intended only for the individual addressed. If you have received this e-mail by mistake, please notify us immediately by return reply. Be sure to delete this message and all its attachments from your system. Please note that any unauthorized review, copying, disclosure or any other use of this information is strictly prohibited. Email transmission cannot be guaranteed to be secret or error-free as information could be intercepted, corrupted, lost, destroyed,

Sample SA-06022021-2018 contained mainly Δ^8 -THC-acetate (Fig. 9). However, small amounts of Δ^9 -THC-acetate were detected by as well. As previously stated, the signal of Δ^8 -THC was possibly due to an internal contamination of the system with this compound.

Figure 9: SIM chromatogram of m/z 314 of the sample solution. The signals at retention times 5.9, 6.1 and 6.3 min were attributed to Δ^8 -THC-acetate, Δ^9 -THC-acetate, and Δ^8 -THC.

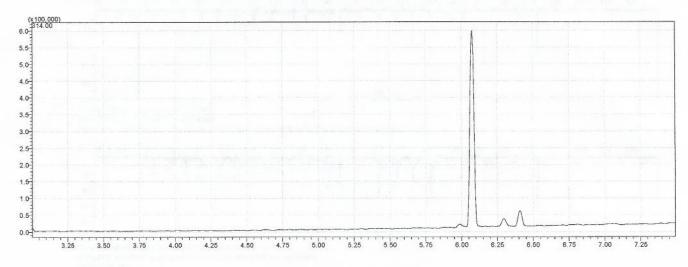
HPLC-PDA results

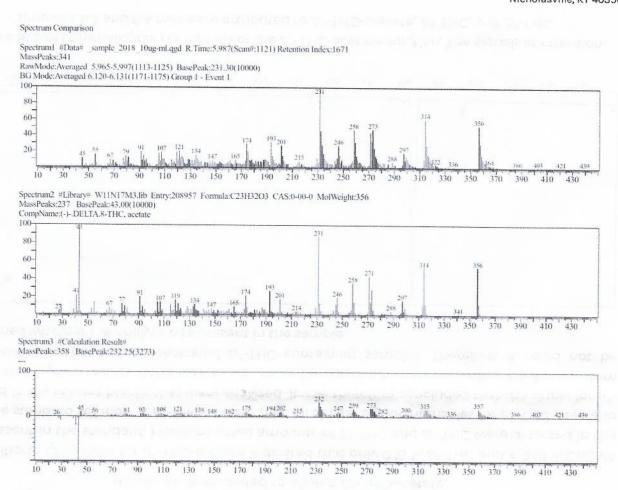
From the HPLC results of sample SA-06022021-2018, it was estimated that the relative area contribution of Δ^8 -THC-acetate was 80 % of the total peak area. The relative area contributions of Δ^8 -and Δ^9 -THC were 2.2 % and 0.24 %. An peak in the HPLC chromatogram had a relative area contribution of 9.2 % of the total.


Note that all these numbers were based on estimates. Furthermore, the attributed signal for Δ^8 -THC-acetate was cut off because the run time was too short since the sample was analyzed using the standard cannabinoids method. For future analyses, the run time will need to be extended to get more accurate values.

Conclusions

GC-MS analysis and spectral library matching indicated that sample identified as SonEx Labs Acetate 656 (SA-06022021-2018) contains Δ^8 -THC-acetate and possibly a small amount of Δ^9 -THC-acetate. Minor amounts of Δ^8 - THC and Δ^9 -THC were detected in the sample but the Δ^8 - THC was almost certainly a contaminant.


Due to the unavailability of a certified reference standard of Δ^8 -THC-acetate, it was not possible to quantify the amount of Δ^8 -THC-acetate in the sample. However, the area of the peak attributed to Δ^8 -THC-acetate in the HPLC-PDA analysis of the sample represented at least 80% of the total area of all peaks detected.


Figure 7: SIM chromatogram of m/z 365 of the mixed solution. The signals at retention times 5.9 and 6.1 min were attributed to Δ^8 - and Δ^9 -THC-acetate.

The certificate of analysis for Δ^9 -THC-acetate indicated that only 0.15 % Δ^9 -THC and < 0.01 % CBDVA were present in the standard. However, small amounts of Δ^8 -THC and Δ^9 -THC were detected in the reference standard solution of Δ^9 -THC-acetate (Fig. 8). Similar signal intensities for Δ^8 -THC were also observed in the solvent blanks that were analyzed. It was therefore concluded that the signal for Δ^8 -THC in the analytical results of this sample was probably due to internal contamination of the system from previously analyzed concentrated Δ^8 -THC containing samples. Therefore, it could not be determined whether the analyte was present in the sample.

Figure 8: SIM chromatogram of m/z 314 of the Δ^9 -THC-acetate solution. The signals at retention times 6.1, 6.3 and 6.4 min were attributed to Δ^9 -THC-acetate, Δ^8 -THC, and Δ^9 -THC.

Figure 6: Library match of the mass spectrum at retention time 5.98 min of the sample SA-06022021-2018 solution.

The extracted ion chromatogram of m/z 365 of the mixed solution (Fig. 7) indicated that Δ^8 - and Δ^9 - THC-acetate were chromatographically resolved. The order of elution of the acetate esters is the same as that for Δ^8 -THC and Δ^9 -THC.

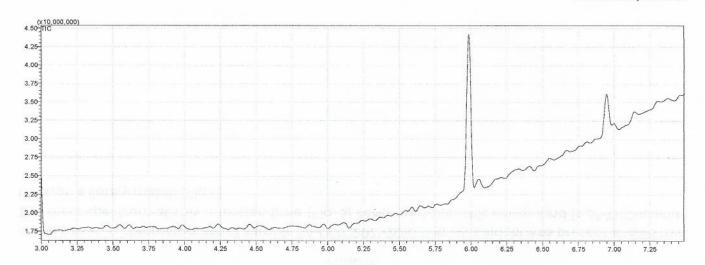


Figure 4: TIC of the full-scan of the sample SA-06022021-2018 solution.

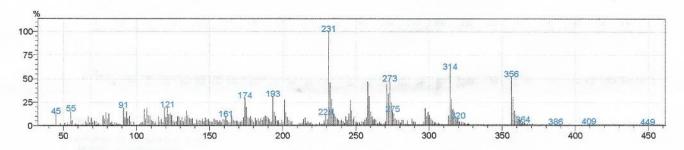


Figure 5: Mass spectrum of at retention time 5.98 min of the sample SA-06022021-2018 solution.

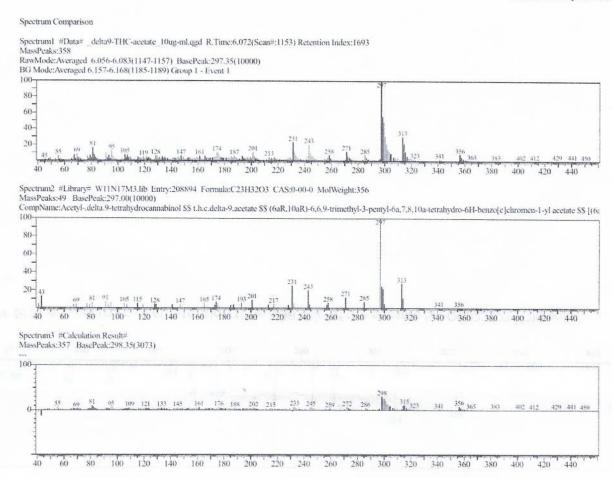


Figure 3: Library match of the mass spectrum at retention time 6.07 min of the Δ^9 -THC-acetate solution.

In the full-scan chromatogram of sample SA-06022021-2018 (Fig. 4), a signal was present at 5.98 min. The mass spectrum at this retention time (Fig. 5) confirmed that this compound is Δ^8 -THC-acetate through a library match (Fig 6).

All samples were analyzed by GC-MS. Two events were set-up:

- 1. A full MS1 mass scan with a scan range of m/z 45–450 to record mass spectral data that is used for identification of the compounds.
- 2. A SIM containing m/z 356 (monoisotopic mass of Δ^8 and Δ^9 -THC-acetate) and m/z 314 (monoisotopic mass of Δ^8 and Δ^9 -THC) to record the signal of the analytes Δ^8 and Δ^9 -THC-acetate and any presence of Δ^8 and Δ^9 -THC.

Sample SA-06022021-2018 solution was also analyzed by HPLC-PDA.

Results and discussion

GC-MS results

In the full-scan TIC (total ion chromatogram) of the Δ^9 -THC-acetate solution (Fig. 1), a signal was present at 6.07 min. The mass spectrum at this retention time (Fig. 2) confirmed the presence of Δ^9 -THC-acetate through a library match (Fig 3).

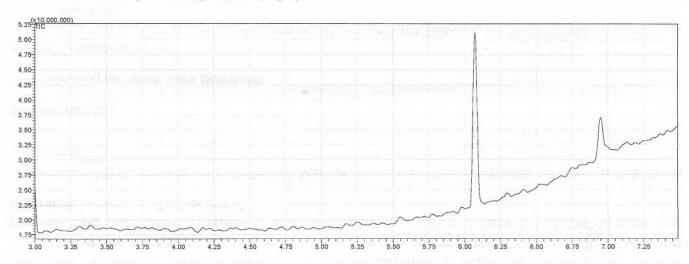


Figure 1: TIC of the full-scan of the Δ^9 -THC-acetate solution.

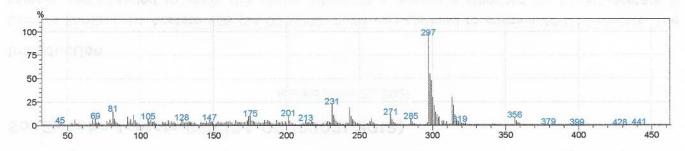


Figure 2: Mass spectrum of at retention time 6.07 min of the Δ^9 -THC-acetate solution.

Investigation of the composition of a Δ^8 -THC-acetate containing sample SonEx Labs Acetate 656 (SA-06022021-2018)

Issued June 22, 2021

Introduction

Sample SonEx Labs Acetate 656 (SA-06022021-2018) was claimed to contain Δ^8 -THC-acetate. The sample was analyzed to verify this claim. Although a reference standard for Δ^9 -THC-acetate is commercially available, to the best of our knowledge, a reference standard for Δ^8 -THC-acetate is not. Therefore, we could not verify the identity of the submitted material as Δ^8 -THC-acetate by comparison to a certified reference standard. However, the sample was analyzed by GC/MS and HPLC_DAD, and the resulting data were interpreted and compared to published data for Δ^8 -THC-acetate and laboratory data for Δ^9 -THC-acetate.

Note that Δ^9 -THC acetate and Δ^9 -THC-O-Acetate are used interchangeably to refer to the same substance.

Experimental

The following samples were prepared:

Δ^9 -THC-acetate solution:

- In a vial, 10 μ L of Δ^9 -THC-O-Acetate solution (Cerilliant T151-1ML, lot FE03192002, 1 mg/ml) was pipetted.
- The solution was diluted with 990 µL of acetonitrile.
- The final concentration of Δ^9 -THC-acetate was 10 μ g/mL

Sample SA-06022021-2018 solution:

- In a 20-mL scintillation vial, 82.12 mg of sample SA-06022021-2018 was weighed out.
- The sample was dissolved with 8.2 mL of acetonitrile.
- The sample concentration of the intermediate solution 1 was 10 mg/mL.
- Into a vial, 10 µL of intermediate solution 1 was pipetted.
- To the vial, 990 µL of acetonitrile was added.
- The sample concentration of the intermediate solution 2 was 100 µg/mL
- Into a vial, 100 µL of intermediate solution 2 was pipetted.
- To the vial, 900 µL of acetonitrile was added.
- The final sample concentration was 10 µg/mL.

Mixed solution:

- Into a vial, 100 μ L of Δ^9 -THC-acetate solution was pipetted.
- To the vial, 100 μL of sample solution was pipetted.
- The final concentrations were 5 μ g/mL of Δ^9 -THC-acetate and 5 μ g/mL of sample SA-06022021-2018 or Δ^8 -THC-acetate (assuming sample SA-06022021-2018 is pure Δ^8 -THC-acetate).

Cannabinoid Profile

Extraction Technician: CB Analytical Chemist: CB

Extraction	Analysis
Date(s)	Date(s)
11/9/2020	11/9/2020

Rhalytical Chemist. Cb	- 11	/9/2020 11/9/2020		
Cannabinoids (HPLC)	Results			
	LOD (mg/g)	%	mg/g	
Cannabidivarin (CBDV)	< 0.090			
Cannabidiolic Acid (CBD-A)	<0.090	ANNE DE LE CONTRACTOR DE LA CONTRACTOR DE LE CONTRACTOR DE LE CONTRACTOR DE LE CONTRACTOR D		
Cannabigerolic Acid (CBG-A)		6.17	61.7	
Cannabigerol (CBG)		0.06	0.6	
Cannabidiol (CBD)	<0.090		1	
Tetrahydrocannabivarin (THCV)	< 0.090	WIII	A 10 TO STATE OF THE PARTY OF T	
Cannabinol (CBN)		0.02	0.2	
delta 9-Tetrahydrocannabinol (THC)	<0.090			
delta 8-Tetrahydrocannabidol		19.11	191.1	
Cannabichromene (CBC)		0.03	0.3	
delta-9-Tetrahydrocannabinolic Acid (THC-A)		0.10	1	
Cannabinoids Total		1/4	mg/g	
Max Active THC		0.08	C.84	
Max Active CBD		0.00	0.00	
T.Active Cannabinoids		0.12	1.18	
Total Cannabinoids		25.50	255.00	
	the same of the sa			

Following USDA guidelines on uncertainty. Attribute Consulting's uncertainty are calculated for CBDs and CBD at 41.4 %. The uncertainty for THCs and THC are 41.5%. This implies the range for a 10% value of CBD to be 9.6 ft 0.4%. The uncertainty range for a 0.30% value of THC would be 0.26.0.32%. The measurement uncertainty is calculated using a coverage factor of 2.

Cannabinoid (mg/g)

Reporting cents will very based on sample extraction weight used for the unarysis.

Additive Consulting 1.0.0 offices WST inscending Reference Standards and Conflict Reference Milenaus to conficults analytical instruction according to the most of the region are applied in the most effect interest informative procedure parameters. The valuate of this report are beautile obligate advertised and control to recording to the conficult and the conficult and conficulties.

721 Cortero Dr. Sun City Center, FL 33573

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068

Broad Spec Distillate Sample Matrix: CBD/HEMP Derivative Products (External Use)

Certificate of Analysis

HAU PROCESSING

2200 E 76TH AVE **DENVER, CO 80229-6631** Batch # 0500074 Batch Date: 2021-06-17 Extracted From: Hemp Test Reg State: Oregon

Order # HAU210617-030036 Order Date: 2021-06-17 Sample # AABM882

Sampling Date: 2021-06-19 Lab Batch Date: 2021-06-19 Completion Date: 2021-06-28

Initial Gross Weight: 80.198 g

Residual Solvents - FL (CBD)

Specimen Weight: 10.300 mg

Passed (GCMS)

Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)
1,1-Dichloroethene	0.16	8	<loq< td=""><td>1,2-Dichloroethane</td><td>0.04</td><td>5</td><td><l00< td=""></l00<></td></loq<>	1,2-Dichloroethane	0.04	5	<l00< td=""></l00<>
Acetone	2.08	5000	<l0q< td=""><td>Acetonitrile</td><td>1.17</td><td>410</td><td><l00< td=""></l00<></td></l0q<>	Acetonitrile	1.17	410	<l00< td=""></l00<>
Benzene	0.02	2	<l0q< td=""><td>Butanes</td><td>2.5</td><td>2000</td><td><l00< td=""></l00<></td></l0q<>	Butanes	2.5	2000	<l00< td=""></l00<>
Chloroform	0.04	60	<l0q< td=""><td>Ethanol</td><td>2.78</td><td>5000</td><td><l00< td=""></l00<></td></l0q<>	Ethanol	2.78	5000	<l00< td=""></l00<>
Ethyl Acetate	1.11	5000	<l00< td=""><td>Ethyl Ether</td><td>1.39</td><td>5000</td><td><loq< td=""></loq<></td></l00<>	Ethyl Ether	1.39	5000	<loq< td=""></loq<>
Ethylene Oxide	0.1	5	<100	Heptane	1.39	5000	<loq< td=""></loq<>
Hexane	1.17	290	<100	Isopropyl alcohol	1.39	500	<l00< td=""></l00<>
Methanol	0.69	3000	<l00< td=""><td>Methylene chloride</td><td>2.43</td><td>600</td><td><loq< td=""></loq<></td></l00<>	Methylene chloride	2.43	600	<loq< td=""></loq<>
Pentane	2.08	5000	<0.00	Propane	5.83	2100	<l0q< td=""></l0q<>
Toluene	2.92	890	<1.00	Total Xvienes	2.92	2170	<l00< td=""></l00<>
Trichloroethylene	0.49	80	<1.00	41-41	272	2170	-LUG

dr

Xueli Gao Ph.D. DABT Gu Lab Toxicologist

Mine Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: "Total CBD = CBD + (CBD-A * 0.877), "Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Carnabinoids Total = CBC + CBDV + THCV + A * Total Detected Carnabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + A * Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milligram per Milligra

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068 Broad Spec Distillate
Sample Matrix:
CBD/HEMP
Derivative Products
(External Use)

Certificate of Analysis

Rap

HAU PROCESSING

2200 E 76TH AVE DENVER, CO 80229-6631 Batch # 0500074 Batch Date: 2021-06-17 Extracted From: Hemp

Test Reg State: Oregon

Order # HAU210617-030036 Order Date: 2021-06-17 Sample # AABM882 Sampling Date: 2021-06-19 Lab Batch Date: 2021-06-19 Completion Date: 2021-06-28

Initial Gross Weight: 80.198 g

0

Pesticides

Specimen Weight: 198.400 mg

Passed (LCMS/GCMS)

Dilution Factor: 7.561

Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)
Abamectin	28.23	300	<loq< td=""><td>Acephate</td><td>30</td><td>3000</td><td><1.00</td></loq<>	Acephate	30	3000	<1.00
Acequinocyl	48	2000	<loq< td=""><td>Acetamiprid</td><td>30</td><td>3000</td><td><l00< td=""></l00<></td></loq<>	Acetamiprid	30	3000	<l00< td=""></l00<>
Aldicarb	30	100	<loq< td=""><td>Azoxystrobin</td><td>10</td><td>3000</td><td><l00< td=""></l00<></td></loq<>	Azoxystrobin	10	3000	<l00< td=""></l00<>
Bifenazate	30	3000	<l0q< td=""><td>Bifenthrin</td><td>30</td><td>500</td><td><l00< td=""></l00<></td></l0q<>	Bifenthrin	30	500	<l00< td=""></l00<>
Carbary1	10	500	<1.00	Chlorfenapyr	48	100	<l00< td=""></l00<>
Chlorpyrifos	30	100	<l0q< td=""><td>Clofentezine</td><td>30</td><td>500</td><td><1.00</td></l0q<>	Clofentezine	30	500	<1.00
Couraphos	30	100	<1.00	Cyfluthrin	30	1000	<l00< td=""></l00<>
Cypermethrin	30	1000	<l00< td=""><td>Daminozide</td><td>30</td><td>100</td><td><l00< td=""></l00<></td></l00<>	Daminozide	30	100	<l00< td=""></l00<>
Diazinon	30	200	<loq< td=""><td>Dichloryos</td><td>30</td><td>100</td><td><1.00</td></loq<>	Dichloryos	30	100	<1.00
Dimethoate	30	100	<l00< td=""><td>Dimethomorph</td><td>30</td><td>3000</td><td><1.00</td></l00<>	Dimethomorph	30	3000	<1.00
Ethoprophos	30	100	<1.00	Etofenprox	30	100	<l00< td=""></l00<>
Etoxazole	30	1500	<l0q< td=""><td>Fenhexamid</td><td>30</td><td>3000</td><td><.00</td></l0q<>	Fenhexamid	30	3000	<.00
Fenoxycarb	30	100	<loq< td=""><td>Fenpyroximate</td><td>30</td><td>2000</td><td><100</td></loq<>	Fenpyroximate	30	2000	<100
Figronii	30	100	<loq< td=""><td>Flonicamid</td><td>30</td><td>2000</td><td><l00< td=""></l00<></td></loq<>	Flonicamid	30	2000	<l00< td=""></l00<>
Fludicaronil	30	3000	<loq< td=""><td>Hexythiazox</td><td>30</td><td>2000</td><td><l00< td=""></l00<></td></loq<>	Hexythiazox	30	2000	<l00< td=""></l00<>
Imazalii	30	100	<l00< td=""><td>Imidacloprid</td><td>30</td><td>3000</td><td><1.00</td></l00<>	Imidacloprid	30	3000	<1.00
Krescrim Methyl	30	1000	<100	Malethion	30	2000	<l00< td=""></l00<>
Mestaryl	10	3000	<.00	Methocarb	30	100	<100
Wellonyl	30	100	<0.00	Mevinphos	30	100	4.00
Mydobutenii	30	3000	<l00< td=""><td>Naled</td><td>30</td><td>500</td><td><l00< td=""></l00<></td></l00<>	Naled	30	500	<l00< td=""></l00<>
Oxamyt	30	500	«LOQ	Paclobutrazol	30	100	<100
Parathion-methyl	48	100	<loq< td=""><td>Pentachloronitrobenzene</td><td>30</td><td>200</td><td><100</td></loq<>	Pentachloronitrobenzene	30	200	<100
Permethrin	30	1000	<loq< td=""><td>Phosmet</td><td>30</td><td>200</td><td><l00< td=""></l00<></td></loq<>	Phosmet	30	200	<l00< td=""></l00<>
Piperonylbutoxide	30	3000	<l00 .<="" td=""><td>Prallethrin</td><td>30</td><td>400</td><td><l00< td=""></l00<></td></l00>	Prallethrin	30	400	<l00< td=""></l00<>
Propiconazole	30	1000	<loq< td=""><td>Propoxur</td><td>30</td><td>100</td><td><100</td></loq<>	Propoxur	30	100	<100
Pyrethrins	30	1000	<loq< td=""><td>Pyridaben</td><td>30</td><td>3000</td><td><1.00</td></loq<>	Pyridaben	30	3000	<1.00
Spinetoram	30	3000	<l00< td=""><td>Spiromesifen</td><td>30</td><td>3000</td><td><1.00</td></l00<>	Spiromesifen	30	3000	<1.00
Spirotetramat	30	3000	<loq< td=""><td>Spiroxamine</td><td>30</td><td>100</td><td><1.00</td></loq<>	Spiroxamine	30	100	<1.00
Tebuconazole	30	1000	<loq< td=""><td>Thiacloprid</td><td>30</td><td>100</td><td><100</td></loq<>	Thiacloprid	30	100	<100
Thiamethoxam	30	1000	<i.00< td=""><td>Trifloxystrobin</td><td>30</td><td>3000</td><td><1.00</td></i.00<>	Trifloxystrobin	30	3000	<1.00

drut our

Xueli Gao Ph.D., DABT Lab Toxicologist

Aixia Sun Lab Director/Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: "Total CBD = CBD + (CBD-A * 0.877), "Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA* CBDV * THCV + THCV + A, *Total Detected Cannabinoids = CBD Total * CBC To

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 3 of 4

CANNABIS & HEMP LABORATORY BEYOND COMPLIANCE

721 Cortaro Dr. Sun City Center, FL 33573 cannabis.com

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068

Broad Spec Distillate Sample Matrix: CBD/HEMP Derivative Products (External Use)

Certificate of Analysis

HAU PROCESSING

2200 E 76TH AVE DENVER, CO 80229-6631 Batch # 0500074 Batch Date: 2021-06-17 Extracted From: Hemp

Test Reg State: Oregon

Order # HAU210617-030036 Order Date: 2021-06-17 Sample # AABM882

Sampling Date: 2021-06-19 Lab Batch Date: 2021-06-19 Completion Date: 2021-06-28

Initial Gross Weight: 80.198 g

Heavy Metals

Specimen Weight: 126.500 mg

Passed (ICP-MS)

Dilution Factor: 2.000

Analyte	(ppb)	(ppb)	Result (ppb)	Analyte	rod	Action Level	Result
Arsenic (As)	100	1500	<l00< td=""><td>Cadmium (Cd)</td><td>(ppb)</td><td>(ppb)</td><td>(ppb)</td></l00<>	Cadmium (Cd)	(ppb)	(ppb)	(ppb)
Lead (Pb)	100	500	354.000	Mercury (Hg)	100	500	<l0q< td=""></l0q<>
				many (rig)	100	3000	<1.0Q

dr Xueli Gao

G

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Ph.D. DABT

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Carnabinoids Total = CBC + CBDV + THCV+ THCV-A, *Total Detected Carnabinoids = CBD Total + CBC Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Constrations unless specified as 12% moisture concentration. Cpc implication in the properties of the colory forming unit per Gram (cfu/g) = Colory Forming Unit per Gram (cfu/g) = Colory Forming Unit per Gram, LOD = Limit of Detection, Dilution Factor (ppb) = Parts per Billion, (*s) = Percent, (cfu/g) = (Lig/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068

Broad Spec Distillate Sample Matrix: CBD/HEMP Derivative Products (External Use)

Certificate of Analysis

HAU PROCESSING 2200 E 76TH AVE **DENVER, CO 80229-6631**

Order # HAU210617-030036 Order Date: 2021-06-17 Sample # AABM882

Batch # 0500074 Batch Date: 2021-06-17 Extracted From: Hemp

Test Reg State: Oregon

Sampling Date: 2021-06-19 Lab Batch Date: 2021-06-19 Completion Date: 2021-06-28

Initial Gross Weight: 80.198 g

Heavy Metals Passed

Potency Panel Not Included

Xueli Gao

Gun Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun

Ph.D., DABT

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: "Total CBD = CBD + (CBD-A * 0.877), "Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA* CBDV + THCV+A * Total Detected Carnabinoids = CBD Total + CBC Total + CBC

721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068 Broad Spec Distillate Sample Matrix: CBD/HEMP Derivative Products (External Use)

Certificate of Analysis

HAU PROCESSING 2200 E 76TH AVE **DENVER, CO 80229-6631** Batch # 0500074 Batch Date: 2021-06-02 Extracted From: Hemp

Test Reg State: Oregon

Order # HAU210602-040014 Order Date: 2021-06-02 Sample # AABK915

Sampling Date: 2021-06-07 Lab Batch Date: 2021-06-07 Completion Date: 2021-06-16

Initial Gross Weight: 25.707 g

Potency		20
Potency	-	20

10.000

10.000

10.000

10.000

0.000035

0.00008

0.000248

0.000014

0.000018

Tested (HPLC) Specimen Weight: 51.560 mg LOD (%) 0.000026 Result (mg/g) 887.500 Dilution (1:n) LOQ (%) 0.001 Analyte (%) 88.750 Delta-8 THC 10.000 Delta-8 THCV 10.000 0.0002 0.001 1.940 0.194 CBT 10.000 0.0002 0.001 0.708 0.071 10.000 0.000014 0.001 0.047 CRDA 10,000 0.00001 0.001 <1.00 0.000032 THCA-A 10.000 0.001 <LOQ 0.000047 THCVA 10.000 0.001 <LOQ 10.000 0.001 THCV <L00 Delta-9 THC 10.000 0.000013 0.001 <LOQ Exo-THC 10.000 0.0002 0.001 <100 0.000065 0.001 CBDV 10.000 <LOQ CBCA 10.000 0.000107 0.001 <LOQ 10.000 0.000054 0.001 CBD <L00 Delta-10 THC 10.000 0.000003 0.001 <LOQ CBNA 10.000 0.000095 0.001 <1.00

0.001

0.001

0.001

0.001

Potency Summary

Total THC Total CBD None Detected None Detected Total CBN Total CBG None Detected 0.047% Other Cannabinoids **Total Cannabinoids** 0.071% 89.062%

Gu drul

Lab Director/Principal Scientist

<LOQ

<LOQ

<L00

<LOQ

<LOQ

Xueli Gao Ph.D., DABT

CBL

CBG

CBC

CBDVA

CBGA

Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Carnabinoids Total = CBC + CBDV + THCV+A, *Total Detected Carnabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV+A, *Analyte Details above show the Dry Weight Concentration surless specified as 12% moisture concentration. (mg/ml) = Milligrams per Millilifiter, LOQ = Limit of Detection, Dilution = Noter (Pbpl) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, , LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/kg) = Milligram per Kilogram, *Measurement of Uncertainty = +/-5%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

KCA Laboratories

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

1 of 2

HHCT8-D

Sample ID: SA-220106-6530 Batch: 122821

Type: In-Process Materials Matrix: Concentrate - Distillate Received: 01/10/2022 Completed: 01/21/2022

Client

InSupply Labs 13551 SE Johnson Rd. Portland, OR 97222

USA

Lic. #: AG-R1078209IHH

Summary

TestCannabinoids
Cannabinoids (Additional)

Date Tested 01/21/2022 01/21/2022

Status Tested Tested

Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

ND		0.129 %		0.129	%	Not Tested	Not :	Tested	Yes		
Total ∆9-T	НС	CBN	CBN		otal Cannabinoids Moisture Content Foreign I		t Foreign Matter				Internal Marke Recovered
nalyte	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)							
BC	0.0095	0.0284	ND	ND	uAU		SA-220106-6	5530			
BCA	0.0181	0.0543	ND	ND	700000						
BCV	0.006	0.018	ND	ND	-						
BD	0.0081	0.0242	ND	ND	600000						
BDA	0.0043	0.013	ND	ND	000000						
BDV	0.0061	0.0182	ND	ND	-						
BDVA	0.0021	0.0063	ND	ND	500000						
BG	0.0057	0.0172	ND	ND							
BGA	0.0049	0.0147	ND	ND	400000						
BL	0.0112	0.0335	ND	ND				Λ.			
BLA	0.0124	0.0371	ND	ND	300000						
BN	0.0056	0.0169	0.129	1.29							
BNA	0.006	0.0181	ND	ND	200000						
.8-THC	0.0104	0.0312	ND	ND	200000			Standard			
9-THC	0.0076	0.0227	ND	ND	2			Pal S2			
9-THCA	0.0084	0.0251 <	ND	ND	100000			Tupur			
9-THCV	0.0069	0.0206	ND	ND	1 1		OBN	1 \ \			
9-THCVA	0.0062	0.0186	ND	ND	0			- 41.77			
otal Δ9-THC			ND	ND		2.5	5.0	7.5	10.0		
otal CBD			ND	ND							

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Morrie

Total

Generated By: Alex Morris Quality Assurance Manager Date: 01/21/2022 Tested By: Scott Caudill Senior Scientist Date: 01/21/2022

1.29

0.129

ISO/IEC 17025:2017 Accredited
Accreditation #108651

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories, KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive

+1-833-KCA-LABS https://kcalabs.com Nicholasville, KY 40356 KDA Lic.# P_0058

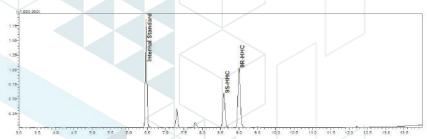
Certificate of Analysis

2 of 2

HHCT8-D

Sample ID: SA-220106-6530 Batch: 122821

Type: In-Process Materials Matrix: Concentrate - Distillate Received: 01/10/2022 Completed: 01/21/2022

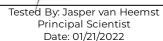

Client

InSupply Labs 13551 SE Johnson Rd. Portland, OR 97222

Lic. #: AG-R1078209IHH


Cannabinoids by HPLC-PDA, LC-MS/MS, and/or GC-MS/MS

Analyte	LOD	LOQ	Result	Result
Analyte	(%)	(%)	(%)	(mg/g)
(9R)-HHC	1.	5.	55.2	552.0
(9S)-HHC	1.	5.	40.3	403.0
Total Additional Cannabinoids			95.5	955.0
Total			95.6	956.0



ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC + Δ 9-THC; Total CBD = CBDA* 0.877 + CBD;

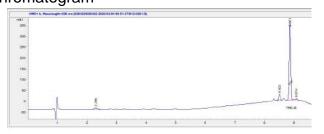
Marin Analytics

Analysis Report

Sonex Labs

robert@sonexlabs.us 214-769-0247

Sample 247-030422-970


05622-CBD003C005

Sample Submitted: 03-04-2022; Report Date: 03-05-2022

05622-CBD003C005

Distillate

Chromatogram

Cannabinoid Profile

THC 0.0

Cannabinoid Profile by HPLC

0.00%

Calculated THC Yield

0.00%

Calculated CBD Yield

Cannabinoid	% wt	mg/g
THC	0.0	0.0
Total Cannabinoids	0.00	0.0
Calculated THC Yield	0.00	0.00
Calculated CBD Yield	0.00	0.00

Calculated Maximum THC Yield = THC + 0.877 * THCA Calculated Maximum CBD Yield = CBD + 0.877 * CBDA

Notes: THC-O 95.7% based on percentage in the chromatogram; no reference standard is available.

0.00%

Total Cannabinoids

Marin Analytics, LLC

250 Bel Marin Keys Blvd, Suite D4 Novato, CA 94949

415-936-6477 / sarabiancalana1@gmail.com

Sara Biancalana

This sample has been tested by Marin Analytics, LLC using valid testing methodologies and a quality system. Values reported relate only to the sample tested. Marin Analytics, LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Marin Analytics, LLC.